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This document provides additional results and details on the protocols used in our experimental evaluation.

1. Dynamic texture segmentation (SynthDB and Dyntex datasets)
The data from the SynthDB dataset used for training consists of the 99 sequences featuring 2 textures [1]. Each texture

is labeled as one of these 12 classes: grass, jellyfish, pond, boiling, escalator, fire, river-far, river, steam, plant-a, plant-i, and
sea-far.

All results reported on the SynthDB and Dyntex datasets used a single scale, i.e. S=1. In our experiments, the use of
multiple scales did not have a significant impact on the results for this task (unlike with object and motion segmentation). We
believe it is a consequence of the limited diversity of training data. Using multiple scales is more likely to be beneficial if the
model was trained on scenes that include dynamic textures of varying spatial extent.

The results on the Dyntex sequences reported in the main paper correspond to the last level of the segmentation, i.e. when
only 2 segments are remaining. Practically, one segment correspond to the main dynamic texture of the scene, the other to
the background (or more static elements, keeping in mind that the camera is moving in some sequences).

2. Object boundaries (CMU dataset)
Our evaluation on the CMU dataset for motion boundaries [5] use the same protocol as in [5, 3, 8]. We use half of the

sequences (even/odd ones) as training and test sets, and average the results over two runs after exchanging the sets. Most
methods [5, 3, 8] do not enforce closed segments but only predict boundaries (i.e. curves in the image), and the performance
is measured with the precision and recall of the recovered boundaries (in our case, the outline of the segments). These
boundaries are compared, not against the hand-drawn ground truth, but against the “candidate” boundaries closest to the
ground truth [5]. In our case, these are the boundaries of the small segments after the initial “bootstrapping” stage that
perform merges using pixel-wise differences. We turn our hierarchical segmentation into a probabilistic boundary map in the
same way as in [9]. The strength of a boundary is proportional to the highest level it appears in. For example, the boundary
remaining between the two large segments at the last iteration of the segmentation is assigned the largest strength. Results
are given below for each sequence of the dataset.
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boundaries (probabilistic boundary map) (unsupervised: light gray, supervised: red)







3. Rigid motion segmentation (MIT dataset)
Our evaluation on the MIT human-labeled dataset [4] uses the same protocol as in [9, 6, 7]. We compare the produced

segmentation with the ground truth using the Rand index. We measure the Rand index on one frame in the middle of the
sequence (the same frames as in [6]). The sequences contain varying numbers of segments. Although the Rand index has
a limited sensibility to the number of segments being compared, we do need to select a segmentation level to report. It is
chosen as the best-matching one (i.e. of highest Rand) in the range of levels with N +/- 3 segments, where N is the number
of segments in the ground truth. Results are given below for each sequence of the dataset.



Input Ground truth Color only Color + proposed motion features
segments Unsupervised Unsupervised Learned metric

Rand index (%)

Method Avg. Car1 Car2 Car3 Dog Hand Person Phone Table Toy

Features Metric

Color histograms only Unsupervised 68.5 77.4 58.9 61.3 49.5 97.9 64.1 48.5 85.5 73.7

Color + filter-based motion Unsupervised 78.8 86.3 53.5 83.0 60.4 97.9 91.7 63.4 88.7 83.9

Color + filter-based motion Learned, logistic regression 76.3 59.5 71.5 82.8 59.0 97.1 97.0 55.0 90.6 74.6

Color + filter-based motion Learned, ITML [2] 70.3 61.3 48.9 84.1 69.5 80.1 58.8 64.0 86.7 79.5

Color + motion Learned as proposed, S = 1 83.0 97.6 71.0 86.2 89.4 79.5 86.5 58.9 88.8 89.1

Color + motion Learned as proposed, S = 2 81.1 96.5 64.7 87.2 86.4 83.6 85.9 55.9 92.9 76.9

Layers++ [6] 77.5 61.2 51.2 77.8 96.4 81.4 98.6 56.7 90.9 83.2

nLayers [7] 82.3 83.6 58.9 76.6 97.4 88.1 94.4 57.8 97.9 85.8

Teney and Brown [9] 83.2 90.0 64.5 79.6 95.9 94.5 83.4 56.1 93.7 90.8
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