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1. Motivation
Motion in videos is a powerful cue to aid in scene under-

standing, by identifying the boundaries and the depth or-
dering of occluding objects. It can help to separate objects
using their intrinsic motion, or parallax-induced motion at
different depths. Most existing work rely on the computa-
tion of the optical flow, grouped into similar regions accord-
ing to a parametric (e.g. affine) motion model. Two limita-
tions ensue from this approach. First, the computation of
the optical flow, despite recent advances, remains compu-
tationally expensive and relies on assumptions (e.g. bright-
ness constancy or rigidly moving objects) that may not hold
true. Secondly, parametric motions may similarly be lim-
ited to simple scenes with translating objects. More com-
plex cases include deformable objects, repetitive motions,
etc. In this work, we consider the use of motion energies,
directly obtained from convolutions of the video with spa-
tiotemporal filters, as an alternative image feature to optical
flow for motion segmentation. We represent the motion of
a region of the video with distributions of such motion en-
ergies, thereby alleviating the limitations of parametric mo-
tion models.

The combination of motion and appearance cues to
improve boundary detection has mostly been addressed
through supervised training [4]. This has some disadvan-
tages related to the availability of suitable training data and
to possible annotation bias in what actually constitutes rel-
evant boundaries. Instead, we are interested in establishing
a learning-free baseline, and we rather hypothesize that a
segmentation framework is a suitable paradigm for group-
ing motions, similarly as it is for grouping static color and
textures cues. Most work on video segmentation extends
image segmentation techniques, and the joint grouping of
appearance and motion features in complex scenes is still
an open problem. [3], for example, briefly mentions the use
of histograms of optical flow, though the improvement in
performance was not rigorously evaluated.

Our contributions consist in (i) the integration of low-
level, filter-based motion features into an existing seg-
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mentation framework [3], and (ii) an empirical evaluation
demonstrating that this approach constitutes a competi-
tive alternative to existing flow-based motion segmentation
techniques, at a fraction of their computational demands.
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Figure 1. We use distributions of low-level, filter-based motion
features as an alternative to optical flow. Beyond segmentation,
motion is used to assign a boundary to the most similar of its two
adjacent segments, then identified as foreground.

2. Proposed approach
Our approach to identify motion is based on existing

work on steerable spatiotemporal filters [2, 1]. Simi-
larly to 2D filters used to identify 2D structure in images
(e.g. edges), these 3D filters can reveal structure in the
spatiotemporal video volume. We employ Gaussian sec-
ond derivative filtersG2θ̂ and their Hilbert transformsH2θ̂.
They are both steered to a spatiotemporal orientation pa-
rameterized by the unit vector θ̂ (the symmetry axis of the
G2 filter). They are convolved with the video volume V of
stacked frames, and give an energy response

Eθ̂(x, y, t) = (G2θ̂ ∗ V)
2 + (H2θ̂ ∗ V)

2 . (1)
In the frequency domain, a pattern moving in the video with
a certain direction and velocity correspond to a plane pass-
ing through the origin. We obtain a representation of image
dynamics by measuring the energy along a number of those
planes, obtained by summing responses of filters consistent
with the orientation of each plane. The resulting motion
energy ME along the plane of unit normal n̂ is given by

MEn̂(x, y, t) =

N∑
i=0

Eθ̂i(x, y, t) , (2)

where N=2 is the order of the derivative of the filter, and
θ̂i are filter orientations whose response lie in the plane
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Input Ground truth Color + motion(2)

Segmentation (avg. Rand index)
Color only 73.3%
Color + Motion(1) 77.6%
Color + Motion(2) 83.2%
Layers++ [5] 77.5%
nLayers [6] 82.3%

Depth order (accuracy, per boundary)
Motion(1) 78.5%

Motion(2) 73.9% Input/ground truth Color only Color + motion(2)

Figure 2. Motion segmentation on the MIT dataset (left and tables) and detection of occlusion boundaries on the CMU dataset (right).

specified by n̂ (see [1] for details). This provides a rep-
resentation of dynamics only, marginalizing the filter re-
sponses over appearance. The measurements MEn̂i

can
be compared to the extraction of optical flow, since each
n̂i specifies a particular orientation and velocity (e.g. pat-
terns moving rightwards at 2 pixels per frame). We eval-
uated the use of these measurements in two different ways
(noted (1) and (2) in Fig. 2). The first, most akin to optical
flow, reduces these measurements to the single orientation
of maximum response at each voxel, i.e. argmaxn̂i

MEn̂i
.

The second consists in the complete set of measurements
MEn̂i . This much richer representation of spatiotemporal
structure is potentially capable of representing multiple, su-
perimposed motions at a single location, offering definitive
advantages over optical flow. Two potential issues must be
examined though. Firstly, due to the broad tuning of the G2
and H2 filters, energy responses arise in a range of orien-
tations around their peak tunings. This propagates to the
MEn̂i , whose values are heavily correlated across neigh-
bouring planes. Secondly, the response to a filter is not in-
dependent of image contrast. We address these two issues
by a non-linear scaling of MEn̂, first normalizing w.r.t. the
strongest local energy measure, then as to emphasize the
actual peak energies at each voxel:
ME′n̂(x, y, t) = MEn̂(x, y, t) / max

n̂
MEn̂(x, y, t) (3)

ME′′n̂(x, y, t) = eα(ME
′
n̂(x,y,t)−1) with α = 1000. (4)

Using the observation that motion- and color-based seg-
mentation are two intrinsically similar problems, we adapt
the segmentation algorithm of [3] to use our representation
of motion. In addition to the original color histograms that
represent the appearance of regions, we similarly accumu-
late our features into motion histograms (as in [3]). These
motion histograms have 2 dimensions, corresponding to the
(spatial) orientations and (spatiotemporal) velocities of the
different n̂i considered (Fig. 1). The agglomerative seg-
mentation iteratively produces results at decreasing levels
of granularity. The inferred boundaries correspond to the
2 voxel-wide bands wherever two segments are adjacent in
the video volume. Each boundary is assigned a strength
from the highest segmentation level it appears in (Fig. 2,
right).

Finally, we determine the local depth ordering of ad-

jacent segments, using the observation that an occlusion
boundary moves together with the occluding segment. For
a given segmentation level, we accumulate motion his-
tograms over each boundary (the set of voxels as defined
above), so that it can be directly compared to the motion
histogram of the adjacent segments (Fig. 1). The boundary
is assigned to the most similar of the two, thus identified as
the “most foreground” of the two.

3. Experiments and discussion
We assigned equal weights to color and motion his-

tograms, and chose n̂i corresponding to 16 spatial orien-
tations and 10 velocities between 0 and 3 px/frame. We
obtained excellent results on the MIT dataset [5] for mo-
tion segmentation (Fig. 2). The average of the maximum
Rand indices (over our different levels of segmentation) is
superior to a state-of-the-art method. The depth ordering
is also well above a random guess. Preliminary experi-
ments on the CMU dataset [4] for occlusion boundaries
also showed promising results (Fig. 1, and 2 right). This
confirms the hypotheses that (i) low-level motion cues are
a viable alternative to optical flow to segment scene mo-
tion, at a fraction of the computational expense, and that
(ii) a segmentation framework can provide appropriate con-
straints for model-free, unsupervised groupings of appear-
ance and motion cues in the context of scene understanding.
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