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ABSTRACT

In this paper, we tackle the problem of face classification and
verification. We present a novel face representation method
based on a Bayesian network. The model captures depen-
dencies between 2D salient facial regions and the full 3D ge-
ometrical model of the face, which makes it robust to pose
variations, and useable in unconstrained environments. We
present experiments on the challenging databases FERET and
LFW, which show a significant advantage over state-of-the-art
methods.

1. INTRODUCTION

The problem of face identification and recognition has been
studied for almost 60 years but is still considered unsolved [1].
Face classification is generally approached in two steps. First,
due to the high dimensionality of face images, dimensionality
reduction algorithms are usually applied to effectively extract
facial image features relevant to face classification. Second, a
classifier is trained for face recognition using these features.
Common choices for the classifier are, for example, Lin-
ear Discriminant Analysis (LDA), Support Vector Machines
(SVM) or Nearest Neighbor (NN). Humans are exceptionally
effective at identifying different human subjects from facial
images, but artificial systems still fail to achieve comparable
recognition accuracy. It is well understood that the perfor-
mance of computational systems is affected by a number of
factors, arising from image nuisances such as illumination
and pixel noise, facial disguise or, importantly, variations of
3D pose. In the traditional approach outlined above, account-
ing for these nuisances is meant to be achieved by extracting
features in the image space that would be insensitive to these
variations. This is obviously a major challenge that limits the
applicability of this paradigm.

Advanced approaches to face recognition can be divided
into 2D, 3D, and hybrid models. Although some models us-
ing only 2D features perform reasonably well (e.g. [2, 3]),
the lacking degree of freedom obviously limits their perfor-
mance in conditions of large variations of pose, expression,

and lighting [4]. To handle these problems, some methods [5]
use facial regions, such as the nose and its surrounding area,
which are minimally affected by deformations caused by fa-
cial expressions. This idea was developed e.g. in [6] using
a set of 38 regions that densely cover the face, from which
a subset is then selected for classification. Alternatively, 3D
models are more robust against illumination changes, but they
must cope with additional challenges such as face alignment,
missing data and partial occlusions. These models are also
more sensitive to facial expressions than their 2D counter-
parts [7]. The hybrid, or multi-modal models have shown
so far the most promising results. By combining the 2D and
3D processing paths in a single architecture, they address the
weaknesses of the individual approaches.

In this paper, we introduce a novel method that leverages
both 2D and 3D facial features. We use a Bayesian Net-
work (BN) to capture dependencies between 2D salient facial
features (namely, the eyebrows, the eyes, the nose, and the
mouth) and the full 3D model of the face. As a consequence,
the proposed method is robust against changes in illumination
and facial pose. The contributions of this paper are twofold.

• We propose a novel strategy for face recognition that
uses a Bayesian network to model dependencies among
2D facial regions and the 3D geometrical model of the
face.

• We present an evaluation of the method on two chal-
lenging facial databases, FERET and LFW, and demon-
strate better detection performance than the state-of-
the-art.

The paper is organized as follows. After a brief review of
related work in Section 2, Section 3 describes the proposed
method. Section 4 presents a method for tracking facial land-
marks and actually extracting features from the images. In
Section 5, we present experiments and comparisons with ex-
isting methods.
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2. RELATED WORK

Existing face recognition methods can be categorized into
three main different categories: 2D, 3D, and hybrid 2D/3D.
The 2D techniques, such as [2, 3, 8, 9, 10], try to classify the
face images using purely image-based models. The perfor-
mance of such methods is very sensitive to variations in ex-
pression, to illumination conditions, and to head orientation.
They are also typically very sensitive to facial disguise (e.g.
a person wearing glasses or a scarf) and to simply misaligned
images.

The limitations of 2D face classification methods have
supported the belief that effective recognition of identity
should be obtained through multi-biometric technologies. In
particular, interest has grown on using the geometry of the
anatomical structure of the face, rather than its appearance.
A number of systems for 3D face matching have thus been
developed in the recent years. See for example [11] for a
survey.

The existing systems based on 3D models can be further
categorized into two distinct subsets: holistic [11, 12, 13]
and region-based [14] techniques. The holistic approach em-
ploy information from the entire face, or from large regions
thereof. Those methods are quite sensitive to proper align-
ment and to varying facial expression. The region-based tech-
niques mitigate these issues by filtering out regions most af-
fected by facial expression and other spurious causes. Since
those methods are based on parts of the faces, their perfor-
mance depends on the quality of the local features extracted
in the corresponding regions.

Hybrid approaches have shown the highest accuracy
among face recognition systems, by combining advantages
of the 2D and 3D processing paths, although at the cost of
a greater complexity. Jahanbin et al. [15] used 2D and 3D
Gabor coefficients in their face recognition system. In [16],
the authors applied PCA to depth and 2D face images sep-
arately, then fusing them for face recognition. In [13], ICP
registration of a 3D face model was combined with Linear
Discriminant Analysis on face images, thus improving over
2D matching alone, in particular in the case of large variations
of pose and illumination. Although promising results have
been reported with these methods, several additional consid-
erations must be made. One limitation of the previous studies
is that they generally did not model or used the dependencies
between facial regions. Important facial details are also often
missed, e.g. near the mouth, chin and cheeks. For example,
considering a face with a smiling expression, the image re-
gion containing mouth is certainly related (geometrically, as
well as appearance-wise) to those containing the chin and the
cheeks. Modeling these dependencies is thus of great interest
as such details can prove to be key distinguishing elements.
In this work, we address this very issue using a generative
model represented as a Bayesian Network, which explicitely
captures dependencies between facial parts.

3. PROPOSED MODEL

In this section, we first review the basics of Bayesian net-
works, and then present its application as our 2D/3D face
model.

3.1. Bayesian Networks

A Bayesian Network (BN) is a type of probabilistic graphical
model. It is defined as directed acyclic graph, in which the
nodes represent random variables X = {x1,x2,x3, . . . ,xN}
and the edges represent the dependencies among these ran-
dom variables. Given the value of its parents, each variable
is conditionally independent of its non-descendants. A BN
can effectively represent and factor joint probability distribu-
tions and is suitable for classification tasks. More specifically,
given a set of random variables, the full joint distribution is
given by:

p(x1,x2, . . . ,xN ) = p(x1)× p(x2|x1)× . . .
×p(xN |x1,x2, . . . ,xN−1)

=

N∏
i=1

p(xi|x1, . . . ,xi−1)

=

N∏
i=1

p(xi|pa(xi)) (1)

where pa(xi) is the parent of the variable xi. Many al-
gorithms have been proposed in the literature for learning
Bayesian Networks [17, 18]. Some of these may seem attrac-
tive, but high computational complexity often limits their use
in the case of high dimensional data such as images. For our
purposes, we use the method presented in [19] to learn the
BN. It selects a structure by minimizing a sequence of two
cost functions. The first optimization is over the local error in
the log-likelihood domain. This function considers every pair
from the set of variables X = {x1, . . . ,xN}, which are in-
dependent of each other. In particular, the function organizes
the variables into a large number of candidate subsets such
that the error is minimized. This step restricts the network
to represent dependencies that only occur within subsets. Fi-
nally, the model selects a network by minimizing the global
measure of empirical classification error computed over the
set of input images. Please refer to [19] for additional details.

3.2. Definition of 3D Model and Feature Points

The 3D face model considered in this paper is similar to the
3D Morphable Model (3DMM) [20]. The 3DMM represents
a face as a shape vector Smod and a texture vector Tmod,
which are linear combinations of, respectively, shapes and



textures of the m face examples:

Smod =

m∑
i=1

αiSi , Tmod =

m∑
i=1

βiTi (2)

m∑
i=1

αi =

m∑
i=1

βi = 1 (3)

where the shape vectors S = (X1, Y2, Z1, . . . , Xn, Yn, Zn)
T ∈

R3n, withX,Y, Z being the coordinates of n vertices, and the
texture vectors T = (R1, G1, B1, . . . , Rn, Gn, Bn)

T ∈ R3n

with R,G,B being the color values of n vertices.
In this work, the possible shape deformations are learned

with by PCA as follows, using the CASIA-3D FaceV1
Database1. Note that the original face images have vary-
ing poses, and that the cloud points have missing data. We
therefore first fit these faces by a generic 3D model as in [21].
Following this preprocessing, the 3D faces are aligned and
have similar parametric forms. We can then apply PCA and
get deformable 3D face models composed by the eigenvectors
si and ti of the covariance matrices. We then represent each
shape-vector and texture-vector model as follows:

Smodel = S̄ +

m−1∑
i=1

αisi, Tmodel = T̄ +

m−1∑
i=1

βiti, (4)

where S̄ and T̄ are the mean shape and texture vectors, re-
spectively. The coefficients α and β are drawn from proba-
bility distributions estimated from the face examples. More
precisely,

p(α) ∝ exp(−1

2

m−1∑
i=1

(
αi

σi
)2) (5)

p(β) ∝ exp(−1

2

m−1∑
i=1

(
βi
δi
)2) (6)

where σ and δ are the eigenvalues of respectively the shape
and texture covariance matrices of the face examples.

3.3. Capturing depencies between 2D and 3D data

The objective of our model is to capture the dependencies be-
tween salient facial features and the full 3D geometrical in-
formation of the face. However, finding all the dependencies
in a model is a NP hard problem. Therefore, we restrict our-
selves to a smaller, and thus more efficient model. The model
considered in this paper is a Bayesian network with seven vis-
ible and ten hidden nodes, as represented in Fig. 1. The set
of visible nodes (lower part of Fig. 1) are the 2D salient fa-
cial features extracted from the input face images. The set of
hidden nodes (upper part of Fig. 1) are the hidden causes that
generate the observations. These hidden variables model the

1http://biometrics.idealtest.org
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Fig. 1. The Bayesian Network model considered in this paper.
B, E, N, M, and Ge refer respectively to eyebrows, eyes, nose,
mouth and 3D geometrical information of the face.

relationships between the different parts of the face, namely
the eyes, the eyebrows, the nose, and the mouth.

The probability distributions of the hidden nodes are
given by discrete values in probability tables. The probability
density functions of the distributions of the visible nodes are
specified by conditional Gaussians:

p(Xi = xi|pa(xi = i)) =

N (µxi + γpa(xi), σ
2
xi
(1− ρ2)) (7)

where N (µ, σ2) denotes a Gaussian distribution of mean µ
and standard deviation σ. In Equation 7, the µxi

and σ2
xi

are
the mean and variance of the feature xi, and pa(xi) refers to
the parents of the node xi. The ρ is the correlation coefficient
between the node xi and its parents pa(xi), and is defined as

ρ =
cov(xi, pa(xi))

σxiσpa(xi)
.

Similarly, γ is defined as

γ =
cov(xi, pa(xi))

σ2
pa(xi)

.

4. FACE TRACKING AND FEATURE EXTRACTION

Once the face model is built as described above, appropriate
facial features for each visible node need to be extracted from
the images. This section describes how this is performed,
through face tracking and then feature extraction.

4.1. Facial feature tracking

The facial features are tracked using Constrained Local Mod-
els (CLM) [22]. In our case, we use a CLM composed of 66



landmarks distributed along the top of the eyebrows, the in-
ner and outer lip outlines, the outline of the eyes, the jaw, and
along the nose.

4.2. Feature extraction

After tracking the individual facial components, a similar-
ity transformation algorithm is applied to the facial features
with respect to the normal facial shape. This step normal-
izes against scale, rotation and translation. This normaliza-
tion provides further robustness to the effects of head motion.
Once the texture is warped into this fixed reference, SIFT de-
scriptors are computed around the outer outline of the mouth,
the eyes, the nose, and the eyebrows. Due to the large number
of resulting features (128 times the number of points), the di-
mensionality of the resulting feature vector is reduced using
PCA to keep 95% of the variance.

5. EXPERIMENTS

This section describes our experiments on the two face
databases FERET and LFW.

5.1. Databases

FERET: This database was used to evaluate the robustness of
our system. It has been widely use for evaluating methods for
face recognition [23]. It contains images of 1196 individuals
with up to 5 images of each individual, captured under dif-
ferent lighting conditions, with varying, non-neutral expres-
sions, and obtained over a period of three years. The com-
plete dataset is partitioned into two disjoint sets: gallery and
probe. The gallery set is provided with labels and is used only
for training. the probe set is used for testing. The probe set is
further divided into four categories: (I) Fb Images, which are
similar to the images found in gallery with small variations in
expressions; (II) Fc Images, which are recorded with different
cameras under different lighting conditions; (III) Duplicate-I
Images, which are taken within the period of 34 months, and
finally (IV) Duplicate-II Images, which are taken one and a
half year later. Fig. 2 shows examples of these different cate-
gories.
Labeled Faces in the Wild (LFW): This database was used
to further evaluate the robustness of our system when deal-
ing with more variations of imaging conditions. The database
[24] contains 13233 face images of 5749 different persons of
mixed gender and ages. It is considered to be very challeng-
ing as it features face images in various poses, lighting con-
ditions, dressing, etc. The dataset is divided into two subsets
named View 1 and View 2. The former is used for training
and validation parameters, while the latter is used for testing.
Examples of the database are shown in Fig. 2. Note that we
used the aligned version of this database as presented in [25].

(a) Fb (b) Fc (c) Duplicate I (d) Duplicate II

(e) (f) (g) (h)

Fig. 2. Example images from the FERET (a–d) and LFW (e–
h) databases. Captions (a–d) refer to partitions of the test set,
as in columns of Tables 2 and 1 (see text for details).

Area under ROC curve
Method Fb Fc Dupl. I Dupl. II LFW

Proposed 93.15 87.90 70.57 61.27 87.75
Yi et al.2013 [26] 83.36 75.47 55.51 60.94 76.92

Heusch et
al.2010 [27]

78.62 69.50 51.17 52.67 75.90

Table 1. Area under ROC curve on the FERET and LFW
databases.

F1-score
Method Fb Fc Dupl. I Dupl. II LFW

Proposed 68.83 63.81 57.21 52.70 66.70
Yi et al.2013 [26] 61.86 59.19 55.87 53.79 65.44

Heusch et
al.2010 [27]

58.55 55.67 53.18 48.76 62.52

Table 2. F1-score on the FERET and LFW databases.

5.2. Evaluation settings

To evaluate the performance of our method, we report two
measures: the area under the ROC curve and the maximum
F1-score. The F1-score is defined as: F1 = 2×Recall×Precision

Recall+Precision ,
and conveys the balance between precision and recall. F1-
score is a better performance measure than the area under the
ROC curve, as the ROC curve is better suited to evaluate bi-
nary classification rather than detection. It does not reflect
the effect of the proportion of the positive to negative sam-
ples. We evaluated the proposed method with a Matlab and
Python implementation.

5.3. Results

Our results are reported in Tables 1 and 2. We compare
them with two competing approaches, from Heusch and Mar-
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Fig. 3. ROC curve of FERET and LFW databases.

cel [27], and Yi et al. [26]. The former, the most similar to our
approach, used a BN model with seven hidden and six visible
nodes that captured dependencies between 2D facial fea-
tures extracted from salient facial regions. The authors [27]
compared their work with HMM, GMM, Eigenfaces, and
Fisherfaces [28] and reported state-of-the-art performance.
Despite similitudes, note that our model differs from [27]
in that we use a different BN structure. Moreover, we also
combine 2D and 3D data to improve robustness, whereas [27]
only considered 2D features extracted from specific facial
regions.

In [26], the authors tackled the problem of 3D face recog-
nition with a system robust to facial pose and head orienta-
tion. As shown in our evaluation (Tables 1 and 2), Heusch et
al. performs relatively poorly. A possible reason is that clas-
sification is only based on features extracted from some fa-
cial regions, without consideration to others facial properties,
such as shape and geometrical information. Our method con-
sistently outperforms the two compared approaches [27, 26].
Fig. 3 reports the ROC curve on both the FERET and LFW
databases.

6. CONCLUSIONS

In this paper, we presented a novel approach to face recog-
nition designed to be robust against changes of pose and il-
lumination, and useable in unconstrained environments. We
used a Bayesian network to capture dependencies between 2D
salient facial regions and the 3D geometrical model of the
face. Experiments on the two challenging databases FERET
and LFW showed that the proposed method significantly out-
performs the state-of-the-art.
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