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Abstract

This paper presents a multiview model of object categories, generally applicable to virtually any
type of image features, and methods to efficiently perform, in a unified manner, detection, localiza-
tion and continuous pose estimation in novel scenes. We represent appearance as distributions of
low-level, fine-grained image features. Multiview models encode the appearance of objects at dis-
crete viewpoints, and, in addition, how these viewpoints deform into one another as the viewpoint
continuously varies (as detected from optical flow between training examples). Using a measure
of similarity between an arbitrary test image and such a model at chosen viewpoints, we perform
all tasks mentioned above with a common method. We leverage the simplicity of low-level image
features, such as points extracted along edges, or coarse-scale gradients extracted densely over the
images, by building probabilistic templates, i.e. distributions of features, learned from one or sev-
eral training examples. We efficiently handle these distributions with probabilistic techniques such
as kernel density estimation, Monte Carlo integration and importance sampling. We provide an
extensive evaluation on a wide variety of benchmark datasets. We demonstrate performance on
the “ETHZ Shape” dataset, with single (hand-drawn) and multiple training examples, well above
baseline methods, on par with a number of more task-specific methods. We obtain remarkable per-
formance on the recognition of more complex objects, notably the cars of the “3D Object” dataset
of Savarese et al. with detection rates of 92.5% and an accuracy in pose estimation of 91%. We
perform better than the state-of-the-art on continuous pose estimation with the “rotating cars”
dataset of Ozuysal et al. . We also demonstrate particular capabilities with a novel dataset featur-
ing non-textured objects of undistinctive shapes, the pose of which can only be determined from
shading, captured here by coarse scale intensity gradients.

Keywords: appearance-based object recognition; object detection; pose estimation; Hough voting;
edges and shape models; viewpoint synthesis

∗Corresponding author.
Email addresses: d.teney@bath.ac.uk (Damien Teney), justus.piater@uibk.ac.at (Justus Piater)

Preprint submitted to Computer Vision and Image Understanding May 12, 2014



1. Introduction and related work

This paper is concerned with the joint recognition and pose estimation of object categories in
2D images. Recognizing that these two tasks represent two sides of a same problem, we tackle them
in a unified approach. In general, the pose (3D orientation) of objects cannot be inferred from just
one type of image information, e.g. silhouette and edges, to cite a common example. Additional
visual cues may be necessary, such as the shading onto the object surface. A key point of our
contributions is thus to provide techniques generally applicable in this regard, even to low-level,
dense and/or non-descriptive image features. To perform continuous pose estimation, our object
model captures, in addition to the appearance at discrete training viewpoints, the deformations
between these, detected from the optical flow between training examples. A measure of similarity
between generated views of the object (possibly at an unseen viewpoint) and a test image allows us to
perform detection, recognition, and pose estimation in a unified manner. The following paragraphs
present the principal motivations and key points of the method, comparing them to existing related
work. Parts of these contributions were introduced in earlier publications [1, 2].

1.1. Tasks considered

The recognition of objects in 2D images encompasses a number of tasks, detailed below, which
are often considered as separate research problems. They are however closely related, and we handle
them all with the same model and methods. Notably, we do not train discriminative models, which
is the usual approach for the classification tasks.

Localization The goal is to identify the parts of the test image that belong to the object of
interest, versus the parts of the image that correspond to background clutter. The result of
localization is typically a set of bounding boxes, which encircle candidate objects in the image,
each accompanied with a detection score. We handle this task with an algorithm similar to
the generalized Hough voting scheme. The model of the object can be learned from one
or several training examples: we handle both cases identically by modeling distributions of
features through kernel density estimation (see Section 2).

Detection One must decide whether the object of interest appears in the test image or not. This
task can be performed alone, or by setting a threshold on scores of localizations to obtain
binary detection results.

Classification (among objects or among discrete poses) One must determine which object
or which viewpoint among learned ones appears in the image. This traditionally involves
learning discriminative classifiers. In our method however, we simply build generative models
independently for each learned object or viewpoint, and determine the best match from the
similarity measured between the test image and one of those models.

Continuous viewpoint (pose) estimation This more challenging task is handled by extending
our generative models to also synthesize unseen (untrained) viewpoints.

1.2. Modeling object appearance

The method for performing recognition of objects in 2D images depends heavily on the internal
representation chosen to model the appearance of those objects. We are interested in building
models of appearance for object categories (or “classes”) rather than specific instances, thus capable
of recognizing, to some extent, unseen objects that are similar to a category learned from a few
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training examples. The goal is for example to train the system with a set of different cars, then to
recognize the pose of a new, unseen car. The categories in such a scenario are defined implicitly by
the training instances used as examples. In the proposed approach, the appearance of the object
under a specific viewpoint is modeled as the distribution of low-level image features, represented,
in a non-parametric manner, by the actual image features of one or several training images of the
objects under that specific viewpoint. We therefore handle variability in appearance in a probabilistic
way; this variability among the training examples can equally come from different objects of a same
category, or from variations of appearance of a unique object, e.g. observed under different conditions
of illuminations.

1.3. 2D and 3D object models

We choose to model the 2D appearance of the objects without explicit knowledge of their un-
derlying 3D shape. The motive for this choice is to handle more easily and naturally the variability
within categories, both in appearance and shape. As a result, the model is thus trained with simple
example images. Existing methods have used explicit, geometrical, 3D models of objects [3], but
the modeling of variations in appearance is generally limited in regards with shape [4, 5]. One
exception is the work of Glasner et al. [6], which uses structure-from-motion to reconstruct accurate
3D models from the training images. They then account for within-category variability simply by
merging multiple exemplars in their non-parametric model, in a fashion very similar to the one we
use (with our 2D training examples). One drawback of their approach is the initial need for a large
number of views to reconstruct accurate 3D models. In comparison, our exemplar-based model can
use an arbitrary number of views, which do not need to overlap, and the model can be incrementally
updated as more views become available.

1.4. Object localization and detection

Object localization and detection among clutter is commonly achieved with variants of either
the “sliding window” or the “Hough voting” approaches. The former (used e.g. in [7]) uses a
binary classifier, which is evaluated on a uniform sample of image locations and scales. Such an
exhaustive search may prove computationally expensive, and many heuristics have been proposed
to alleviate this issue [8]: salient regions, coarse-to-fine-search, etc. Voting techniques based on the
well-known generalized Hough transform [9] provides another way to alleviate the complexity issue.
Probabilistic formulations of this voting technique have been proposed through the implicit shape
models [10, 11]. Our algorithm for detection uses this voting scheme, applied to low-level, dense
image features. Hough voting was extended to discriminative framework by Maji and Malik [12],
by computing optimal weights to the image features of the model. They obtained excellent results,
further improved by a subsequent verification step, in which the initial detections are rescored by an
SVM-based classifier. We reuse this idea of weighting parts of the learned model; the exact procedure
is slightly different, and suited to our non-discriminative features. Although not a central element
of our contributions, we will show that this weighting often brings substantial improvements.

1.5. Choice of image features

The type of image features used to encode the appearance of the objects is a crucial choice. Some
methods historically used of the appearance of the object as a whole [13–15], but with the common
downsides of poor robustness to occlusions and a need for large numbers of training views. At the
opposite end, feature-based methods have relied on “interest points”, precisely located in the images,
and characterized by hand-designed descriptors of local appearance, such as SIFT descriptors [16].
Those discrete points can then be matched between the test image and the training examples [3].
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While this approach has proved to be highly successful and efficient in many cases, the extraction of
such discriminant image features cannot be relied upon in general cases, as it often fails with non-
textured objects. The basic approach also does not readily extend to variability within categories.
A recent trend is to describe image contents with similar descriptors of appearance over a dense grid
across the image, such as done by the successful histograms of oriented gradients (HOG) [7], also used
within the state-of-the-art detector of Felzenszwalb et al. [17]. The idea behind those descriptors is to
capture statistics or distributions of primitive characteristics (such as intensity gradients) over local
image regions. We believe that this approach is indeed the most generally-applicable one, and is the
central motivation for our technique. Similarly to, e.g. HOGs, our “distributions of features” capture
local statistics densely over the images, but we do not depend on hand-designed descriptors, and we
offer a unique formulation suitable to different types of image features. Another notable difference
of our method with HOGs is to use gradients extracted at a coarse scale, intended to capture
shape (rather than pure appearance) of smooth surfaces, whereas HOGs were most successful with
gradients extracted at a much smaller scale, thus essentially capturing sharp transitions like edges.

Most current, state-of-the-art methods for object recognition rely on the use of image edges
(e.g. [18, 19], among many others), seen as an efficient representation of the silhouette and shape
of objects. The typical technique basically consists in building intermediate representations such as
contour fragments, which can then be matched discriminatively between training and test images,
and used e.g. in a Hough voting scheme. Our approach, which leverages the simplicity of low-level,
fine-grained image features, can be applied to edges by considering all edge pixels of the image as
features. At the cost of higher computational costs, this approach leads to excellent results as well,
while satisfying our aim for a general and straightforward formulation.

A large area of research has focused on the modeling and detection of deformable shapes (see [18]
for a review). Interestingly, our simple approach proves competitive with some of those techniques,
as demonstrated on the ETHZ shape dataset. Although we neither model continuous contours nor
their variations explicitly, our low level features (edge points) can encode similar variations to some
degree. Another advantage of our our method is its ability to learn shape models similarly from a
single or multiple examples, and from only loosely segmented images (with a bounding box). Such
capabilities are not commonplace in the domain of shape matching, but were also offered by the
work of Ferrari et al. [18].

Finally, our capability of handling dense image features is demonstrated and used with great
advantage with intensity gradients, extracted at a coarse-scale over the whole images. Using such
gradients provides unique capabilities, as it allows one (1) to effectively handle non-textured objects
(see Section 5.6), and, even more importantly, (2) to resolve cases where edges alone would only
offer ambiguous information on the presence or the pose of an object in a scene. Indeed, the shading
over homogeneous surfaces, captured by such gradients, may sometimes be the sole relevant clue,
in particular to identify the exact pose of certain objects, or, for example, to differentiate between
hollow versus full objects of similar shapes (see our experiments in Section 5.6).

1.6. Multiview models of appearance and pose estimation

Object recognition with 2D training examples typically uses viewpoint-specific models, e.g. a
model for cars seen from the front, and another for cars seen from the side. Recent contributions
have included more and more techniques that handle multiple registered training viewpoints. The
object in the test image is then matched against one of these viewpoints and allows performing a
coarse estimation of its pose (or 3D orientation) also called pose classification. We refer to this
basic approach as a “nearest-neighbour” pose estimation. Some applications (robotic interaction
and grasping for example) require however a more precise estimation of the pose [20, 21]. This
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capability was commonly reserved to recognition methods using 3D object models. As discussed
above though, they do not cope well with object categories, which are clearly very challenging with
regards to the task of pose estimation. Few appearance-based methods have been designed to provide
this capability [14]. Most recent multiview models of appearance consider the different training
viewpoints independently [21–25], while others try to match and link features across viewpoints
[26–28]. Savarese et al. [27], for example, model an object as a collection of planar parts that can
appear in different views. We follow an intermediate approach, by storing independently the image
features that make up the different views, but we also store, along with every each image feature,
how its appearance varies with respect to the pose of the object. The multiview models mentioned
above only performed localization and classification such as “frontal view” or “side view”, whereas
we allow precise, continuous pose estimation.

Simple techniques have been proposed to improve the precision of nearest-neighbour pose classifi-
cation. They typically involve voting in the 3D pose space followed by averaging [21] or probabilistic
smoothing schemes [1, 25, 29], leading to a precision beyond the resolution of viewpoints given as
training examples. While those simple techniques have sometimes given very interesting results, we
rather chose, in the work presented here, to explicitly detect, and include in the model, the changes
of appearance between the discrete viewpoints seen during training (practically, how image features
translate in the image, and thus how the appearance “deforms” between neighbouring viewpoints).
This information extends our generative model, which can now synthesize arbitrary, untrained
viewpoints. We can then finely optimize the 3D pose, starting from the initial nearest-neighbour
estimates. Let us mention the work of Torki and Elgammal [30]. In their radically different approach
to appearance-based pose estimation, they learn a direct regression from local image features to the
pose of the object. This original approach recovers a precise pose, but cannot handle significant
clutter or occlusions, and the accurate pose estimation depends on the (supervised) enforcement
of a one-dimensional manifold constraint (corresponding to the 1D rotation of the object in the
training examples). It is not clear how that approach would extend to the estimation of the full 3D
pose of an object. Other recent works such as [31] have looked further at manifold modeling for
appearance-based pose estimation, but with an evaluation limited to fairly simple conditions, and
the performance of such methods for detection in cluttered scenes is not obvious.

1.7. Synthesis of novel viewpoints

During an off-line training phase, we use an optical flow algorithm between pairs of images to de-
tect how the appearance of each training object varies between these viewpoints. The image features
extracted from one of these images can then be deformed into the other, and the interpolation for
intermediate viewpoints is straightforward. We thereby obtain a generative model that synthesizes
the appearance of the object in any (possibly unseen) viewpoint. This procedure is related to the
technique of morphing in computer graphics [32–34], with the difference that we are considering
arbitrary numbers of input views, and we do not rely on established correspondences between spe-
cific landmarks of the input views. This similarly contrasts with the competing method of Savarese
et al. [35], which does use specific correspondences between nearby views. Our advantage is to
handle non-textured objects with little detail. Although some global consistency in the detected
deformations is enforced by the optical flow algorithm, each image feature independently stores its
possible deformations. This does not limit the model to a particular class of transformations. In
comparison, Savarese et al. [35] specifically models affine transformations of object parts, assuming
that objects are made of large planar parts. We also use a sparse set of training views (typically
spaced about 20◦ apart on the viewing sphere) and do not require videos or dense sequences of
images to track features between frames, as opposed to Sun et al. [36].
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1.8. Summary of contributions

Our main contributions can be summarized in the following points.

1. We present a general framework for modeling the appearance of objects and object categories,
suitable to virtually any type of image features, applicable for detection and recognition with-
out relying on hand-designed local visual descriptors, while still providing performance and
efficiency on par with state-of-the-art — arguably more complex — methods.

2. We show how to handle dense, unmatchable image features, such as coarse-scale intensity
gradients. This ultimately enables the method to recognize objects without texture, and to
handle cases where shading constitutes the sole source of unambiguous visual information.

3. We provide a technique for identifying, and storing, within a multiview model of appearance,
how the appearance varies between discrete training viewpoints. This ultimately allows per-
forming continuous pose estimation of an object in a novel scene, without relying on an explicit
3D model of the object. This also readily applies to object categories, and not only to specific
objects.

2. Probabilistic model of appearance

This section presents our model of appearance with a bottom-up description. We start by
turning a set of image features of a given image into a “distribution of features”, then use those
representations to form our model that includes several viewpoints, and possibly several training
examples for each viewpoint. We finally show how to detect and recognize those training views in
a novel test image.

2.1. From image features to probability distributions

Our approach is based on a representation of images as continuous probability distributions
of image features. The motivation for representing images as distributions is twofold. First, this
representation accounts for the inevitable uncertainty of the description of any single image, due to
e.g. image noise, quantization errors, uncertainty during feature extraction, etc. Secondly, it also
provides, as we will see in the next section, a way of modeling variability in appearance of an object
or object category, e.g. given several different examples of this category. It will also give us a more
abstract representation of the images that is convenient to manipulate with existing probabilistic
techniques, and that generally applies to any type of image features. The approach is first applied
and presented for a test image — in which we want to recognize the object of interest — while the
next section will then apply it to the training examples.

We start off by extracting, from a given test image, different types of features (detailed in
Section 4.1), each type denoted by an index f = 1 . . . F . These can be as simple as the pixels
belonging to edges (which we call “edge points”), or to the value of the intensity gradients for all
pixels of the image (“gradient points”). In general, each feature x is thus characterized by (1) its
position in the image, noted x.pos (∈ R2) and (2) some appearance attributes, noted x.app. In the
case of edge points, we use, as an attribute, the local orientation of the edge (an angle in S+

1 = [0, π[);
in the case of gradient points, we use the orientation and the magnitude of the gradient. The contents
of a given test image form thus, for each type f of features, a set testf = {xi}i, with xi ∈ Af , the
domain of these features. For example with edge points, Aedges = R2 × S+

1 (see Section 4.1 for
details).
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Figure 1: We model the appearance of an object with continuous probability distributions of image
features, defined from one or several training examples (left). The model can be visualized by
drawing samples (right) from those distributions, in this case as edge points and gradient points
(hue/saturation represent respectively orientation and magnitude).

We now show how to turn such a set of discrete image features (from a given test image) into a
continuous probability distribution. We define and represent such distributions over the appearance
space of image features (Af ) in a non-parametric manner, through kernel density estimation (KDE).
With this procedure, all image features are used as particles supporting simple kernels, the sum of
which represents a continuous distribution. Formally, for each type of image features f , we use the
set of features testf extracted from our test image to define the distribution

φf
testf

(x) =
∑

xi∈testf
wt(xi) N (xi.pos;x.pos, σpos) Kf (xi.app;x.app) , (1)

with x ∈ Af , N a Gaussian kernel for the position of the features, Kf a kernel for their appearance
attributes (see Section 4.1), and wt(xi) the weight of the feature xi. Those weights are set uniformly
for the features of a test image, i.e. wt(xi) = 1

|testf | ∀xi ∈ testf . This representation with KDE will be

reused for the training images, where the weights will then take a more complex form (Section 2.4).
Practically, Eq. 1 gives us a probability density function that can be easily evaluated for any x. For
example, in the case of edge points, we can evaluate the probability of observing a horizontal edge
at a specific location in the image.

2.2. Application to object categories and to multiple views

We have represented our test image as continuous distributions of image features. We will now
similarly apply that approach to the training images. Two differences are worth mentioning though.

First, we may observe the object of interest under multiple viewpoints. Each training image t
corresponds to a viewpoint vt ∈ S2 (a point on the viewing sphere), and gives, a set of features trainfvt
for each type of feature f (defined similarly to the sets testf above). Those multiple viewpoints

are considered independently at this point, and they each define distributions φf
trainfvt

as in Eq. 1.

Only in Section 3 will we consider multiple viewpoints together, in order to perform continuous pose
estimation. As a first step though, we are only interested in recognizing (approximately at least)
one of the discrete viewpoints provided as the training examples.
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Second, we may be provided with training images of several, different objects (object “instances”)
representative of an object category. We assume that all training images are aligned and at the
same scale, which can be practically done automatically as explained in Section 5. We now want
our distributions of features to reflect statistics relevant to all the different training examples. This
is straightforward within our formulation with a KDE: for each viewpoint vt, we simply include,
in the set of features trainfv , the features extracted from all training images corresponding to that

viewpoint (Fig. 1). The resulting distributions φf
trainfv

, as defined earlier, are then representative of

the occurrence of image features among all those training examples together, and they constitute
our model of appearance of an object category. Consequently, the appearance of that category is
thus defined implicitly by the instances provided as training examples.

2.3. Use of proposed model for detection and recognition in a new image

We now would like to detect, or recognize the learned object in the test image. The solution
to this task consists in the optimal set of in-plane transformations w∗ (a translation, rotation and
scaling in the image) and viewpoint (out-of-plane transformations) v∗ (∈ S2), which corresponds to
the training viewpoint recognized in the test image. Let us mention, as a side note, that this result
(v∗, w∗) presents 6 degrees of freedom (DoF), and that it can be equally described in the image
space (as we do) or in the “world” space (as Euclidean coordinates for position and orientation).
The latter is usually preferred in the field of robotics, and commonly called the 6-DoF pose of the
object. Both representations are however equivalent and interchangeable, provided the calibration
of the camera.

We will first present how to measure the visual similarity between the test image and the learned
object at a specific viewpoint and in-plane transformations. We will then provide an algorithm to
identify the optimal set of such transformations, determining the local maxima of that similarity.
At this point, we still consider the training viewpoints independently, and thus perform a “nearest-
neighbour” classification of the viewpoint. This will serve as a starting pointer later, for a local
optimization procedure to perform continuous pose estimation (Section 3).

Let us consider a test image is represented by the distributions of features φftest, and a specific
training view t represented by φf

trainfv
. This training view may appear in the test image under any

similarity transformations w (in-plane translation, rotation, scaling), trivially applied by a function
transformw(x). Accounting for such transformations, we measure the similarity between the test
and training views with the cross-correlation of the distributions

(φf
testf

? φf
trainfw

)(w) =

∫
Af

φf
testf

(
x
)

φf
trainfv

(
transformw(x)

)
dx . (2)

To efficiently obtain an approximate evaluation the integral of Eq. 2, we use Monte Carlo integration
[37]. This involves drawing samples xi (` = 1 . . . L) from the distribution φftest (see Section 4.3), and
computing the following sum:

(φf
testf

? φf
trainfv

)(w) ≈ 1

L

L∑
i

φf
trainfv

(
transformw(xi)

)
. (3)

We can substitute the distribution φf
trainfv

by its definition with KDE (as in Eq. 1). Assuming this

distribution is represented by L′ particles xj (either the original image features extracted from the
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Figure 2: Higher weights (darker colors) are assigned to the image features most informative to
both detection and pose estimation. On this toy dataset (18 images of the object rotating around
one axis), the cylindrical base, which looks similar in different views, receive lower weights. Non-
silhouette edges, which can unambiguously determine a precise pose, receive high weights.

training images, or a resampled set of those as will be discussed in Section 4), we have

(φf
testf

? φf
trainfv

)(w) ≈ 1

LL′

L∑
i

L′∑
j

wt(xj) N (xi.pos; transformw(xj .pos), σpos) Kf (xi.app;xj .app) .

(4)
Now, taking into account several types f of image features (f = 1 . . . F ), the full similarity

measure between two images finally uses the product over f of the expression above, which gives

similaritytest,trainv (w) =
∏
f

(φftest ? φftrainv )(w) . (5)

We now have the core of the proposed method, with equations 4 and 5: we can easily evaluate the
likelihood of observing, in the test image, the object under the viewpoint v and in-plane transfor-
mations w. The solution to the problem of object localization corresponds the maxima of Eq. 5, i.e.

(v∗, w∗) = arg max
v,w

(
similaritytest,trainv (w)

)
. (6)

Our algorithm to solve this maximiation problem is detailed in Section 4.2. It efficiently computes
the values of the objective function over all image locations (in-plane translations), with a method
similar to a Hough voting using samples drawn from our distributions of features.

2.4. Weighting of image features

We now present how to assign adequate weights to samples drawn from the trained model. The
model of appearance presented in Sections 2.1 and 2.2 is merely a convenient way of representing
the appearance of object categories. Since our goal is specifically to use this model to detect an
object among clutter, and to determine its actual pose, we wish to give more weight its parts that
are most informative to those tasks. As will be detailed in the Implementation section (Section 4),
we choose to preselect samples offline from the trained model for efficiency. Therefore, the weights
associated to these samples can also be computed in a pre-processing step, using the procedure
described below.

Weighting training data in the context of object recognition is common among many existing
methods [12, 38–40], where it has shown to increase performance significantly. In comparison to
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existing methods, our procedure is better suited to non-discriminative low-level image features, and
does not rely on large amounts of training examples. It iteratively uses a validation test set to
weight each feature relative to how informative it is to discriminate the appearance at a specific
pose, versus other poses and against background clutter.

The procedure is performed for each type f of image feature separately; we omit the superscripts
f in the following paragraph to lighten the notations. We initially run the algorithm for detection
and pose estimation (Section 2.3) with uniform weights on all image features of the training data.
The idea is then to decrease the relative weight of those features that lead to incorrect results,
from false positive detections (object identified in the background clutter) or from the recognition
of incorrect poses (e.g. a car facing right identified as a car facing left). For each training view t
(corresponding to a viewpoint vt), we obtain some incorrect results {(vn, wn)}n (n = 1 . . . N) to
be used as negative examples (typically a pose estimate off by 20◦ or more, or an overlap of the
detection bounding box less than 0.5 with the ground truth). We then update the weights of all
image features xi of the training view t according to a three step rule:

wt’(xi) = 1 − 1
N

∑
n φtrainvt

(
transformw−1

n
(xi)

)
wt(xi) ← λ wt′(xi) + (1− λ) wt(xi)
wt(xi) ← wt(xi)

/ ∑
i wt(xi) .

(7)

The first of these steps evaluates the contribution of the image feature xi to the negative examples
(incorrect results), by simply measuring how well that feature “matches” with the training view
superimposed onto the test view (according to the in-plane transformations wn). The weights are
then updated (step 2, with learning rate λ = 0.5, typically), and normalized as to always sum to
1 (step 3). The effect of these steps is thus to actually decrease the relative weight of the features
that lead to misdetections of misclassifications of the pose. The whole procedure is then be repeated
iteratively: detection is performed, again, on the same validation dataset, but with the new weights
for the model, which gives different negative examples, that are used with the three step rule to
update the weights. As shown through our experiments, stable weights are usually reached within
the order of 4–5 iterations (Section 5.2, Fig. 9).

Note that, if no validation test set is available, the weights can still be computed as described
above by reusing, as validation test set, the training images themselves. When performing detection
on the training images, the difficulty is then essentially to recognize the object in one viewpoint
versus the other viewpoints (and not versus clutter). As a result, the weights then learned from
negative results will help to differentiate each training viewpoint: higher weights are given to the
image features that are very informative to a specific viewpoint (Fig. 2). This effect is similar to
the one obtained in earlier work [1].

Finally, let us remark that the weighting scheme proposed here could be compared to the classical
“term frequency – inverse document frequency” approach used in text mining, where high weights
are assigned to words (image features, in our application) specific to a class of documents to retrieve
(a specific viewpoint, here), relative to their likelihood of occurrence in general (in background
clutter, in our case) [41].

3. Continuous pose estimation

The appearance model presented so far treats the different viewpoints provided in the training
data independently, and performs a coarse pose estimation, or pose classification, by recognizing
one of those discrete viewpoints. Our objective is now to provide a more accurate estimate of the
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Figure 3: Generative model of appearance for novel viewpoints. The training viewpoints are typi-
cally regularly distributed on the viewing sphere (left, black dots). Deformations between adjacent
viewpoints (red segments) are detected with an optical flow algorithm, and allow interpolation of
object appearance at a novel viewpoint (orange dot and center picture), by combining and deforming
the image features of nearby viewpoints (orange circles and outer pictures).

Viewpoint
(v ∈ S2)

v1

v2

v

v3

trainv1

trainv2

trainv

trainv3

Position of features in
image (x.pos ∈ R2)

Figure 4: Schematic representation of the training data, and of the generative model for novel
viewpoints. Image features (blue points) are available for some discrete training viewpoints vt,
and the deformations (translations in the image plane, red arrows) are detected between adjacent
viewpoints during a preprocessing step. These translations are linearly interpolated to infer the
appearance of the object at a novel viewpoint v (the set of image features trainv). The novel view
includes the image features from several nearby training views, v2 and v3 here.
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pose, beyond the resolution of the training viewpoints. We first present a generative model capable
of synthetizing the appearance of the learned object (or object category) at an arbitrary viewpoint,
interpolating between the known views, then we show how to use it for a local optimization of initial
(coarse) results.

3.1. Generative model of appearance for arbitrary viewpoints

The goal of our generative model is basically to fill in the gaps between the discrete training
viewpoints. Although it is sometimes possible to establish explicit correspondences between image
features of nearby training views, this approach could not be relied upon in general, as it does
not generalize to dense or non-discriminative image features. Therefore, we chose instead to iden-
tify dense deformations between pairs of adjacent training views, using an optical flow algorithm.
Those deformations are then combined and linearly interpolated to deform the image features of
the training images into any arbitrary viewpoint (Fig. 3 and 4).

More precisely, we first define a function dist(v, v′) that measures the angular distance between
two viewpoints on the viewing sphere. We define the set of all pairs of neighbouring training
viewpoints V = {(t, t′) : dist(vt, vt′) < th} (with a threshold of th = 20◦ typically). During an off-
line training phase, an optical flow algorithm [42] is applied on all pairs of views (t, t′) ∈ V1. Each
pair produces a dense flow map UVt→t′(x) that corresponds, in our case, to the local deformation
(translation in the image plane) undergone at an image location x when moving from viewpoint vt
to vt′ . We can now define our generative model noted trainv, which corresponds to the set of image
features defining the appearance of the object at a novel viewpoint v, as the union of image features
of nearby training views, translated appropriately using the precomputed deformations. Formally,

trainv =
⋃

vt:dist(vt,v)<th

deformvt→v

(
trainvt

)
. (8)

The function deformvt→v adjusts the position of the image features of a training view vt into the
novel viewpoint v. It uses a linear combination of two2 precomputed deformations, in order to
translate each image feature adequately. We denote these two deformations by the indices of the
two viewpoints between which we computed them, and call them (t, t′) and (t, t′′). They are chosen
from V so that the novel viewpoint can be reached (on the viewing sphere) by a positive linear
combination of them. Therefore, ∃ α, β ∈ R+ : v = vt + α(vt′ − vt) + β(vt′′ − vt). Practically, this
means that the viewpoints vt, vt′ and vt′′ cannot be collinear on the viewing sphere. In the simple
case where training viewpoints spaced on a grid (as in the experiments of Section 5), we simply choose
vt′ and vt′′ respectively along the changes in azimuth and elevation. It is now straightforward to
define the function that combines the two deformations:

deformvt→v

(
trainvt

)
= {x′i : x′i.pos = xi.pos + α UVt→t′(xi.pos)

+ β UVt→t′′(xi.pos)
and x′i.app = xi.app , ∀xi ∈ trainvt

} .
(9)

The appearance of the image features is thus left unchanged, but their position in the image is
modified using a linear combination of the deformations detected with optical flow. Using a pa-
rameterization of the viewpoint with euler angles as we do in our implementation (Section 4.4),

1When building a model of an object category, the deformations are detected using pairs of views of a single object
instance at a time, since the detection of optical flow requires fairly similar images to succeed.

2The use of two precomputed deformations accounts for the two dimensions of the viewing sphere.
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this linear interpolation of image location with respect to angles is a simplistic approximation of
the underlying transformations (3D rotation and projection onto the image plane). This linear ap-
proximation however proved appropriate, since the deformations are detected between fairly close
viewpoints (due to the limitations of the optical flow algorithm), and more complex interpolation
schemes did not prove more effective in practice.

3.2. Local optimization for the pose of initial detections

We use the algorithm of Section 2.3 to obtain initial detections and recognitions of training
poses. Those are then used as starting points to run a local optimization, using the generative
model described above, in order to refine and obtain a precise pose estimate. The objective function
to maximize during this optimization is still the same as described in Section 2.3 (Eq. 5). The only
difference now is that the similarity is measured between the test view and a generated view, at an
arbitrary viewpoint. Since the appearance of a generated view varies smoothly across viewpoints,
the value of the similarity measure (our objective function) is also guaranteed to be smooth in
the neighbourhood of the optimum we are seeking. However, no assumption can be made about
its convexity, and its complex definition (parameterized on the 6 dimensions of the viewpoint and
in-plane transformations) makes the evaluation of its gradient expensive. Fortunately, the initial
estimates used as starting points can be assumed to be close approximations of the global optimum.
All those conditions motivated the use of a simple hill-climbing algorithm. We iteratively optimize
pairs of dimensions at a time, namely the 2 viewpoint angles, the image location, then the scale and
in-plane rotation. We empirically observed that a close approximation of the global optimum can
be reached in this way after only a few iterations [2].

4. Implementation

This section presents details that are not specific to the method, but rather choices of imple-
mentation. Those specific choices discussed below refer to the implementation used throughout the
evaluation of Section 5 and available on the author’s website [43].

4.1. Application to different types of image features

We demonstrate the applicability of the method to two different types of image features: edges
and intensity gradients extracted at a coarse scale.

Edge points

Image edges are widely used in the context of object recognition as they are effective and efficient
representatives of shape (being rather sparse, compared to dense gradients). Using edges alone will
also allow a fair comparison of our results with existing methods. We use the classical intensity-based
Canny detector to extract edges from input images. The image features considered are then the
pixels belonging to the resulting binary edge map. We attach, to each of these edge point features,
an appearance attribute corresponding to the local (tangent) orientation of the edge, defined on
S+
1 = [0, π[. The kernel associated with that attribute naturally uses a von Mises distribution

(similar to a wrapped Normal distribution) on the half-circle (Table 1).
Note that our distance measure between edges could be compared to the directional chamfer

distance [42, 44]. The approximation proposed in earlier work (discretization of orientations, ap-
proximation of edges by straight segments [42], etc.) can thus be seen as approximations of our
more general formulation. Consequently and unsurprisingly, the directional chamfer distance was
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Edge points

Aedges = R2 × S+
1 position, orientation

Kedges
(
x1.app, x2.app

)
= VM+

(
x1.app; x2.app, κ

)
= C1 . eκ cos(x1.app−x2.app)

Gradient points

Agradients = R2 × S1 position, orientation

Kgradients
(
x1.app, x2.app

) 1
= C2 . VM+

(
x1.app; x2.app, κ

)
undirected

2
= C3 . VM

(
x1.app; x2.app, κ

)
directed

Table 1: Formal definition each type of image features used in our implementation. The notations
VM and VM+ denote von Mises disributions respectively on S1 = [0, 2π[ and S+

1 = [0, π[. C denotes
a normalization constant.

reported to perform similarly as our base method on the ETHZ shape dataset with hand-drawn
examples [42]. This comparison is anecdotal since their exact performance numbers were not avail-
able. Moreover, our method includes numerous other improvements like the weights on the features
or the learning of models from examples.

Gradient points

The goal of our gradient features is to represent regions in the image of slowly varying intensity,
due to e.g. shading on smooth surfaces. It is easy to see how this information is complementary to
the edges, which rather capture sharp transitions. We extract gradients by first convolving the image
with derivative-of-Gaussian filters in horizontal and vertical orientations. Each pixel of the image
with significant gradient magnitude (set by a fixed low threshold) is an image feature, which gets,
as its appearance attributes, the orientation of the gradient (an angle in [0, 2π[). The extraction of
gradients is performed at several coarse scales (typically, σ = 2 . . . 5 px), and the gradient of largest
magnitude is retained. We propose two versions of a kernel suited to the gradient points (Table 1),
using the orientation in either an undirected or directed manner. In the undirected manner, the
orientation of the gradients is compared only on the half-circle. Two horizontal gradients, from
black to white and from black to white would thus be considered identical. In the directed manner,
their orientation in that case is considered opposite. We compare both versions in our experiments.

4.2. Voting algorithm for object detection

As presented in Section 2.3, performing object detection amounts to identifying maxima of the
similarity between the test view and one of the training view. We perform the initial detection using
one single type of image features at a time. In practice indeed, in the problem of localization in an
image, the meaningful optima of the full similarity function (using several types of image features,
Eq. 5) will also correspond to local optima for each type features alone. For efficiency, we typically
run this procedure using the (more sparse) edge points, and then compute the exact similarity
scores with (possibly) additional features (Eq. 5), at those discrete values of (v, w) proposed by the
voting algorithm. It is however also possible to use dense features alone (gradients for example)
with this voting procedure, e.g. if the object does exhibit any meaningful edges, as demonstrated in
Section 5.6.

From the definition of our similarity measure we show below that a procedure akin to a traditional
Hough voting can approximate this value, which leads to Algorithm 1. On the one hand, considering
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a single type of features f , Eq. 4 and 5 specify how to measure the similarity between the test view
and a training view v under the in-plane transformations w:

similaritytest,trainv (w) ≈ 1

LL′

L∑
i

L′∑
j

wt(xj) N (xi.pos;x′j .pos, σpos) Kf (xi.app;xj .app) . (10)

with samples xi drawn from φf
testf

, xj from φf
trainfv

, and x′j = transformw(xj). Let us consider a

common 2D voting space H corresponding to image locations, containing discrete votes at locations
vj .pos of respective weights vj .weight . After convolving this voting space with an isotropic Gaussian
kernel of bandwidth σpos , the value at a location l is given by:

H(l) =
∑
j

vj .weight . N
(
l; vj .pos, σpos

)
. (11)

One can now readily see that Eq. 10 and 11 can be made equivalent with votes in the Hough space
such that vj .pos = (x′j .pos − xi.pos) and vj .weight = wt(xj) .K

f (xi.app, xj .app). Thus, by casting
votes of such locations and weights, the values in the voting space after blurring will approximate our
similarity measure for all the discrete image locations represented by the voting space, from which
we can then trivially identify the local maxima. The complete algorithm is given in Algorithm 1.
It iterates over discrete viewpoints, scales and in-planes rotations3, then uses, at each iteration, the
voting procedure to identify the best image location.

4.3. Building and sampling category models

In order to build a model of an object category from several instances, we first identify the
discrete viewpoints provided in the training data, and at which the category model will be defined.
For each viewpoint, we combine all instances defined at that viewpoint, by aligning the views and
simply merging their sets of features (see Fig. 8 for example). To align the views, we trivially
translate and/or scale each example as it is added to the model, so as to maximize its similarity
(Eq. 5) with the current model (Fig. 6, top row).

Using our distributions of features requires drawing samples from those. Sampling from dis-
tributions defined through KDE involves selecting a particle at random, then drawing a sample
from its associated kernel. The set of particles that define category models is representative of
the distribution of image features among the training examples, which is highly multimodal. If
those examples are only roughly segmented and contain significant clutter, as in the “ETHZ Shape”
dataset (see Fig. 6, top row), a large fraction of the particles will account for noise. They corre-
spond to non-meaningful variations of appearance among the training examples that we wish not
to capture. To address this specific concern, we propose a variant of the sampling procedure that
focuses on the main modes of the distribution. This variant differs in the selection of a particle.
Instead of choosing it uniformly at random, we select particles with a probability proportional to
their likelihood under the distribution defined by the whole set of features. Formally, given the set
of features trainf = {xi}Mk

i=1, which define the distribution φf
trainf

, we will select a particle xi with

a probability proportional to φf
trainf

(xi). Similar procedures for drawing samples from the main
modes of a distribution have been previously proposed in the literature, e.g. in [45] under the name

3The discrete steps for the search scales and in-plane rotations are parameters of the algorithm.
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Algorithm 1 Voting algorithm for object detection, similar to a generalized Hough transform,
which uses samples from our distributions of image features.

Input:

f The type of image features to use for the initial detection.

testf Set of such image features of the test view.

trainfvt With t = 1 . . . T , sets of image features of the T training views.

Output:

R =
{

(vj , wj)
}
j

Candidate detections of training viewpoints, i.e. couples

of viewpoint/in-plane transformations, local maxima of Eq. 2.

Procedure:

R← ∅
For each discrete training viewpoint t = 1 . . . T

For each discrete step of in-plane rotation r
For each discrete step of image scale s

Initialize H empty 2D Hough accumulator corresponding to image locations
For each ` = 1 . . . L

Select a sample x1 from φf
testf

and x2 from φf
train

f
vt

Add a vote to H at location x2.pos − x1.pos
of weight Kf (x1.app, x2.app) . wt(x2)

Convolve (“blur”) H with Gaussian kernel of size (s.σpos)

Keep each local maxima of H: store its corresponding image location in w
together with current rotation r and scale s, and R← R ∪ (vt, w)
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of “2-level importance sampling”. As a side note, formulated using importance sampling, the tech-
nique proposed above corresponds to using φ as the proposal distribution, in order to sample from
a distribution φ′ in which the probability densities would have been squared. Visual comparisons
of sampling methods are provided in Fig. 6. Moreover, we empirically observed that, after selecting
particles, drawing random samples from their associated kernels proved unnecessary or sometimes
detrimental, unless using very large numbers of samples. We thus only use the subset of particles
themselves as samples. For efficiency, we preselect this subset off-line as a preprocessing step. Those
precomputed samples are thus readily available at test time, and this also allows precomputing their
associated weights (Section 2.4). A complete overview of the different steps involved in the learning
of a category model, then in its use for detection and pose estimation, is provided in Algorithm 2.

Algorithm 2 Full algorithm for learning model of object category, and for detection followed by
continuous pose estimation in a test image.

Training (off-line)

For each viewpoint
Extract edge and gradient features from training images of the current viewpoint
Align features of training images, as to maximize their similarity (Eq. 5)
Merge aligned features of all those training images
Pre-draw samples from resulting distribution, assign uniform weights

Extract edge and gradient features from validation images
Pre-draw samples from resulting distributions, assign uniform weights

For each iteration for learning weights
Perform detection on validation images (Algorithm 1)
Update weights using incorrect detections as negative examples (Eq. 7)

If training viewpoints are close enough for continuous pose estimation
Detect deformations between neighbouring viewpoints with optical flow
Store deformation of each pre-drawn sample from the training images

Testing (on-line)

Extract edge and gradient features from test image
Draw samples from resulting distribution, assign uniform weights
Perform detection, using edges only (Algorithm 1)
Compute full similarity scores of resulting detections, using edges and gradients (Eq. 5)
Return detections with highest scores

If training viewpoints are close enough for continuous pose estimation
Consider the detection with the highest score
For each iteration for optimizing the viewpoint

Generate appearance of the model at a slightly perturbed viewpoint (Eq. 8)
Compute similarity score between test image of generated viewpoint (Eq. 5)
If similarity score improved then keep perturbed viewpoint

Return the detection with the optimized viewpoint

4.4. Software implementation

The manipulation of our low-level image features typically involves large numbers of very simple
operations. These are excellent candidates for massively-parallel execution on a graphical processing

17



unit (GPU). The provided software is implemented in Matlab and allows execution on either a CPU
or a GPU. As a ballpark figure, on a typical consumer-level desktop computer, execution on a GPU
is typically 20 times faster than execution on a CPU, with test times in the order of seconds (e.g. on
the “ETHZ shape” dataset) to minutes (on the cars of the “3D Object” dataset). Although some
specific effort was spent adapting the algorithm for execution on a GPU, performance has not been
our primary concern, and further improvements in performance are certainly possible. Existing
work on the implementation of the Hough transform on GPUs [46–48] may be of interest in this
context. Also note that the test times of the algorithm scale with the number of image features used.
Our fine-grained, undistinctive image features (edge points and gradient points) thus present the
worst case in this regards. Using sparser image features with richer descriptors within the proposed
method would hugely decrease its computational requirements.

5. Experimental evaluation

All the contributions of this paper form together a single coherent framework. One of our goals
is to demonstrate the versatility of the resulting method, which we therefore evaluate on a variety of
tasks and datasets. We present them by order of relative complexity, starting with object detection,
first learned from a clean shape template, then learned from images. We then consider the task
of coarse, discrete pose estimation (or pose classification), i.e. the recognition of specific trained
viewpoints. We finally consider continuous pose estimation. The task of pose estimation is viewed
as the most complex task, as it does also involve the detection and recognition of the object within
clutter the image. To the extent possible, we reuse existing datasets, such as the “ETHZ shape” [49]
and “3D Object” [27], considered as benchmark datasets. This allows direct comparison with recent
and state-of-the-art methods on several of the tasks considered. Additionally, we present some of the
unique capabilities of our method with a custom dataset of smooth and non-textured objects that can
only be recognized from shading and homogeneous image regions, which we make possible through
the use of coarse-scale image gradients as image features. All scripts for replicating the experiments
of this paper are available, together with the code of the method, on the author’s website [43]. Very
few parameters need to be set within the method. A suitable bandwidth for the kernels (Eq. 1) is set
as a fraction of the size of the object in the training images (for example, in the order of σpos = 10px
for the ETHZ shape dataset), and the bandwith on the orientation of edges and gradients is set
with κ = 128 (in a von Mises distribution, which would correspond to a standard deviation of ∼ 20◦

in a wrapped normal distribution). The effect of the other parameters is discussed below, notably
the number of samples drawn from the distributions. We identify overlapping detections from the
Hough voting algorithm as per a standard procedure, i.e. when their bounding box overlap exceeds
20%, then keep only the one of higher score. One practical effect is that, if two trained vewpoints
are matched on a similar location in the test image, only the one with the highest similarity score
is retained.

5.1. ETHZ Shape dataset: benchmark for shape detection, trained from a single or multiple examples

The ETHZ Shape dataset is a standard benchmark for object detection, which features five
diverse classes (bottles, swans, mugs, giraffes and apple logos) in a total of 255 images collected from
the web by Ferrari et al. [49]. It is considered very challenging because of intraclass shape variations,
large scale variability and severe clutter. The goal of evaluating this dataset is to demonstrate
that the proposed method achieves adequate performance of shape-based detection. Although we
do achieve performance on this task on par with or superior to previously-proposed methods, our
method was not specifically aimed at this task, and its many other capabilities will be demonstrated
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Full proposed method 84.1/84.1 96.4/96.4 74.7/73.0 69.7/62.1 90.9/81.8
(learned weights)

No weights 81.8/79.5 96.4/90.9 52.7/44.0 54.5/45.5 78.8/66.7

Contour networks, Ferrari, ECCV 2006 [49] 72.7/56.8 90.9/89.1 68.1/62.6 81.8/68.2 93.9/75.8
TPS-RPM, Ferrari, CVPR 2007 [50] 86.4/84.1 92.7/90.9 70.3/65.9 83.4/80.3 93.9/90.9
Ravishankar, ECCV 2008 et al. [51] 97.7/95.5 92.7/90.9 93.4/91.2 95.3/93.7 96.9/93.9

Table 2: ETHZ Shape dataset: detection with hand-drawn models. Weights on image features are
represented on the first line; darker colors correspond to heavier weights. We report detection rates
(in %) at 0.4/0.3 FPPI. We obtain performance in the order of state-of-the-art methods specifically
designed for contour matching. We perform relatively poorly with giraffes and mugs though, which
present more variety in aspect ratio in the test images.

Full proposed method 90.0/85.0 96.4/96.4 63.8/55.3 61.3/61.3 52.9/47.1
(proposed sampling, learned weights)

Proposed sampling, no weights 80.0/70.0 96.4/96.4 38.3/36.2 58.1/41.9 35.3/35.3
Random sampling, learned weights 25.0/25.0 53.6/53.6 12.8/14.9 6.5/ 9.7 23.5/23.5
Random sampling, no weights 20.0/20.0 75.0/71.4 17.0/12.8 29.0/22.6 23.5/23.5

HOG, Dalal, CVPR 2005 [7, 52] 85.0/ – 14.3/ – 34.0/ – 77.4/ – 67.7/ –
TPS-RPM∗, Ferrari, CVPR 2007 [50] 83.2/77.7 81.6/79.9 44.5/40.0 80.0/75.1 70.5/63.2
kAS, Ferrari, PAMI 2008 [52] 60.0/50.0 92.9/92.9 51.1/49.0 77.4/67.8 52.4/47.1
M2HT, Maji, CVPR 2009 [12] 95.0/95.0 96.4/92.9 89.6/89.6 96.7/93.6 88.2/88.2

Table 3: ETHZ Shape dataset: detection with models learned from images. The first line shows
the training data, as all the training examples aligned and superimposed onto each other. We
report detection rates (in %) at 0.4/0.3 FPPI. We obtain excellent performance on apple logos and
bottles, but perform relatively poorly on the giraffes and the swans, for which the example images
include lots of clutter. We do not reach the state-of-the-art performance of M2HT, which includes
an additional SVM-based classifier to validate candidate detections. ∗The results of TPS-RPM are
not directly comparable as they use a 5-fold cross validation.
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Figure 5: Influence of the number of samples used from the object model. We report the ratio of
correct results (correct bounding box and correct estimated pose) on the 6th car of the “3D Object”
dataset. Performance degrades smoothly with smaller numbers of samples, which can be desirable
for efficiency.

on other experiments presented below. The object classes of the ETHZ dataset are intrinsically
defined by their shape, and we therefore focus on the use of image edges, as most competing
methods do. We did not obtain significant differences in the results with other image features
such as our coarse-scale gradients. We consider each object class separately, with a model (with
a single viewpoint) trained for each of them independently. The common evaluation measure for
this dataset is to plot detection rates (DR) versus the incidence of false positives (false positives
per image, FPPI), while varying the detection threshold. Detection rates at a fixed FPPI of 0.3 are
used for direct comparisons. Detections are counted as correct with a bounding box overlap of at
least 20% with hand-drawn models, and 50% with models learned from images (again, as in existing
work such as [52]). All parameters were kept identical for all object classes, except σpos , set from
the size of the training template, as stated above.

The first setting we consider is the use of a single, hand-drawn model of each shape for training,
as in [49]. The hand-drawn model is treated directly as an edge map, from which we pre-draw
samples by selecting points along these edges, and of which we then learn weights. To allow a
valid comparison with [18, 49], we use all 255 images as test set, and learn weights using incorrect
detections (negative examples) in 20 random images collected from the web. We obtain the weights
represented in Table 2. One can observe that long, uncharacteristic and easily matchable parts
of the contours receive low weights, while high weights are assigned to salient parts with higher
curvature, naturally less frequent among the random negative examples used to learn these weights.
As expected, the detection results show that those weights significantly improve the results by
decreasing the number of false positives (Table 2). While not surpassing the state of the art,
we obtain remarkable performance, especially considering the fact that competing methods were
specifically designed for the particular task of shape matching of contours, whereas our approach is
a much more general one.

The second setting in which we evaluate this dataset involves learning the models from example
images. We use the training and test splits of [52], i.e. the first half of the images of each class as
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All training examples aligned and superimposed

Random samples

Samples from proposed method

Figure 6: ETHZ Shape dataset: models learned from images, visualized as samples drawn from the
distributions of features. We visualize two different amounts of samples for each sampling method
(with equal amounts for the two methods). The proposed sampling scheme is able to recover
very simple representations of the shapes with small number of samples, whereas a basic, random
sampling includes unwanted samples corresponding to clutter in the training images. The model of
the giraffe is noticeably worse than the other shapes, because of the large fraction of clutter in most
of the training examples.
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Correct detections Correct poses
(AP) (MPPE)

Full proposed method 92.5% 91.0%
(edges and directed gradients, learned weights)

Edges only, no weights 54.1% 85.2%
Edges only, learned weights 90.4% 92.6%

Arie, ICCV 2009 [53] – 48.5%
Su, ICCV 2009 [54] 55.3% 67.0%
Liebelt, CVPR 2010 [55] 76.7% 70.0%
Payet, ICCV 2011 [56] – 85.4%
Xiang, CVPR 2012 [57] 98.4% 93.4%

Table 4: 3D Object car dataset: detection and discrete pose estimation. The use of weights sub-
stantially improves the detection among clutter. We outperform most existing methods, although
we do not reach the near-perfect performance of the “Aspect Layout Model” of Xiang et al. [57],
which explicitly considers the 3D structure of the objects.

the training set. We also use the rough presegmentation of these images provided as ground truth
bounding boxes. Those images are aligned and set at a same scale (Section 4.3). We pre-draw
samples from the model, of which we learn weights, using, as negative training images, images from
the four other classes (as in [52]). The testing is performed on all other images of all classes. The
models learned for each class are visualized in Fig. 6. The effect of the proposed sampling method
(Section 4.3) versus a random sampling is quite dramatic. The proposed procedure concentrates
on the main modes of the distributions, and provides reliable representations of the shape, even
with limited numbers of samples. These “cleaner” models hide some undesirable variation from the
training data, such as the water waves around the swans, or the inner texture within the apple logos.

We outperform a number of existing methods (Table 3). We do not reach the near-perfect
results of M2HT [12], which uses a discriminative classifier on top of their detections. Interestingly
however, their detection algorithm alone achieved a rather low detection rate of only 60.9% at
1.0 FPPI, whereas our detector achieves 72.9% at 0.4 FPPI (averaged over the five classes). They
also reported a notable improvement by performing detection at different aspect ratios, which we
do not.

5.2. 3D Object dataset: multiview model, detection in clutter and coarse pose estimation

We now consider the “3D Object” dataset introduced by Savarese et al. [27]. We focus on the
“car” object, as it is the most widely used, and gives us the most points of comparison with existing
methods. The dataset features 10 different cars, each viewed under 24 viewpoints (8 azimuths and
3 elevations) and 3 scales. The task is both to detect the car among background clutter and to
identify its azimuth angle (one of the 8 discrete values, i.e. whether it is view from the front, the
left side, the 3/4 front/right side, etc). Pose estimation is limited to this coarse classification into
the trained viewpoints, as these are too distant from each other to use our procedure for continuous
pose estimation; finding dense correspondences between views of such complex objects would require
viewpoints much closer than 45◦ apart.

We use similar conditions and evaluation criteria as [27]: the first 5 cars for training and the
last 5 for testing. The training images are used both to build the model (with the provided ground
truth segmentation), and then to learn weights by using the incorrect detections on them as negative
examples (Section 2.4). Results are measured in terms of the rate of correct detections (average
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Figure 7: 3D Object Car dataset: classification rate of the different viewpoints. We clearly outper-
form most existing methods.

Figure 8: Visualization of the edge model for some views of the “3D Object Car” dataset. Darker
colors correspond to heavier weights. Low weights are assigned to parts that can easily be matched
to common background clutter (and lead to false positive detections), such as horizontal lines. More
characteristic parts, such as the wheels in the side view, receive, on the opposite, high weights.
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Figure 9: 3D Object Car dataset: evolution of performance for detection (AP) and pose estimation
(MPPE) as a function of the number of iterations for learning the weights of the samples drawn from
the distributions of features. At each iteration, weights are updated based on negative examples
provided as incorrect detections in the training images themselves, then used in the manner of a
validation dataset. Stable weights are reached with a small number of iterations.
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Figure 10: Results of detection on the tabletop dataset as precision/recall curves for each of the
three object categories. The detection rate is significantly improved by using coarse-scale gradients
in addition to edges, especially for the mugs, which present characteristic shading patterns captured
by those additional features.

Figure 11: Sample detections of cups (left, center-left) and staplers (center-right, right) on the
tabletop dataset (correct detections in green, incorrect ones in red).

precision, or AP), defined by a bounding box overlap of 50%, and the ratio, among correct detec-
tions, of correct estimates of the azimuth angle (mean precision in pose estimation, or MPPE). As
reported in Fig. 7 and Table 4, we outperform most existing methods evaluated on this dataset.
The visualization of the weights learned for the image features (Fig. 8) provides some insight on
their significant impact on performance. In the side view for example, the long horizontal lines,
which are also frequent in background clutter, receive low weights. The wheels, on the opposite,
are more characteristic and much better indicators of a car seen from the side, and thus receive
higher weights. Interestingly, this distribution of weights is visually very similar to those obtained
by Maji and Malik [12] with their own procedure, on side views of cars of the “UIUC car” dataset.
We also observe that using our coarse-scale gradients as features, in addition to edges, brings a
slight improvement. The difference is however marginal, as the appearance of the cars is already
well defined by their shape and edges alone.

5.3. Tabletop dataset: multiview model, detection in clutter

We further evaluate our performance for object detection in clutter using the “tabletop” dataset
of Sun et al. [58]. It features a total of 30 objects from 3 categories: computer mice, mugs and
staplers. These object categories present more basic shapes than the cars in the “3D Object”
dataset, which is a different challenge and provides complementary evaluation points. We use,
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Number of training views 15 30 40

Full proposed method (optimized viewpoint) 8.15◦ 1.16◦ 0.80◦

Nearest neighbour detection only 8.63◦ 3.89◦ 3.00◦

Torki and Elgammal [30] 5.47◦ 1.93◦ 1.84◦

Teney and Piater, CRV 2013 [1] 4.42◦ 1.62◦ 1.49◦

Table 5: Rotating car dataset: continuous pose estimation on a single instance (the first car). We
report the mean error on the estimated azimuth angle, in degrees. We outperform existing methods
on the two largest sizes of the training set; with smallest training set however, the viewpoints are
often too distant to each other to reliably interpolate the appearance at intermediate viewpoints,
and the optimization of the viewpoint is thus not as effective.
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Figure 12: Rotating car dataset: distribution of error on estimated azimuth (in degrees) during
experiments on multiple cars; a number of images yield an error of about 180◦, due to ambiguous
appearance of side views and front/rear views.

as the training set, the part of the dataset with objects appearing on a turntable under known
viewpoints (“Table-Top-Pose”; see Fig. 1). A model is learned for each object category. Testing
is performed on scenes (“Table-Top-Local”) containing one or several instances of the objects in
a cluttered office environment; note that those experimental conditions are more challenging than
existing evaluations (e.g. in [56]) since those two parts of the dataset feature different imaging and
lighting conditions. We perform detection in the test images of each object category separately,
and we measure the detection rates with the standard criterion of 50% bounding box overlap. We
report results in Fig. 10 as precision/recall curves. The use of coarse-scale gradients brings here
a significant improvement, in particular on cups, the shape of which produces very characteristic
shading patterns. The improvement is marginal for the computer mice: the different instances
are very diverse in shape, and observed under fixed lighting conditions in the training images that
produce specular highlights, which do not appear in the testing images. The simple gradients are
obviously not robust to such variations by themselves, but we believe that they would show a better
advantage if the training images presented more varied lighting conditions, although this could
unfortunately not be tested with this dataset.

5.4. EPFL Rotating cars dataset: continuous pose estimation

We now evaluate the unique capability to perform continuous pose estimation within our appearance-
based method. Few other methods have tackled this problem, especially at the level of object cat-
egories, which explains the limited choice of suitable datasets. The most appropriate, in our view,
is the “Multiview car” dataset introduced by Ozuysal et al. [59]. It includes about 2000 images of
20 very different cars filmed on rotating stands at a motor show. The dataset is very challenging
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Median Mean Mean Error Error
90%ile < 22.5◦ < 45◦

Full proposed method 5.2◦ 18.7◦ 34.7◦ 80.3% 82.1%
(optimized viewpoint, learned weights)

Nearest neighbour detection only, no weights 7.6◦ 24.7◦ 39.8◦ 71.6% 76.3%
Nearest neighbour detection only, learned weights 5.7◦ 19.1◦ 35.0◦ 80.2% 82.1%

Ozuysal et al. [59] – – 46.5◦ 41.7% 71.2%
Glasner et al. [60] 24.83◦ – – – –
Torki and Elgammal [30] 11.3◦ 19.4◦ 34.0◦ 70.3% 80.7%
Teney and Piater, CRV 2013 [1] 5.8◦ 23.7◦ 39.0◦ 78.1% 79.7%

Table 6: Rotating car dataset: continuous pose estimation at the category level. Instances 1–10
are used for training (first row of pictures) and 11–20 for testing (second row of pictures). We
outperform existing methods. Note however that the precision of the best methods reaches the
accuracy and level of imprecision (estimated around 3− 4◦) in the ground truth annotations, which
explains why no further improvements can be made, especially by our optimization of the viewpoint.

Detection rate Azimuth Mean azimuth
(AP) error < 10◦ error

Full proposed method (optimized viewpoint) 83.3% (40/48) 70.0% 3.8◦

Nearest neighbour detection only 83.3% (40/48) 70.0% 4.0◦

Zia et al. [61] (with hand-made CAD models) 93.8%(45/48) 73.3% 3.8◦

Table 7: Detection and continuous pose estimation, using the model learned from rotating cars
(instances 1–10, as in Table 6), tested on images from the “3D Object” dataset (instance 6). The
model is able to detect and estimate the orientation of the car accurately, despite challenging
differences in imaging conditions, in scale and in object appearance between the two datasets. We
use the same metrics as [61]: the rate of correct azimuths is measured on correct detections, and the
mean error is measured on those correct azimuths. Incorrect azimuths often are off by about 180◦.
The results of Zia et al. [61] are included for reference only: they rely on hand-built CAD models,
whereas our method is purely appearance-based and trained on example images.
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Figure 13: Samples results of continuous pose estimation on the “3D Object” dataset using the
model learned from rotating cars. Boxes indicate the localization of the car as identified by our
system, and the roses in the upper-left corners indicate the orientation of the front of the car as
seen from the top (as in [59]).

due to changing lighting conditions, high intraclass variability in shape, appearance and texture,
and highly similar views (symmetrical side views, similar front and rear views) which are sometimes
hard to differentiate even for a human. The dataset was used in [59] for pose classification in 16
discrete bins, and in [30] for continuous pose estimation. We first evaluate our method, as in [30],
on the first car of the dataset, training a model on this single specific car. We select 15, 30 or 40
equally-spaced images of the sequence as training images, and use all other images (spaced about
4◦ apart) for testing. We obtain superior results to [30] (Table 5). We then perform experiments
at the category level, in conditions similar to those used in [30]. The first 10 cars of the dataset
are used for training, and the other 10 for testing. Again, we obtain performance superior to all
published results to our knowledge (Table 6). As highlighted in Fig. 12, the remaining errors in
pose estimation correspond to an error of about 180◦. This is caused by the symmetric aspects of
some cars in the side views, and confusion between front- and rear-facing views.

We further evaluated the generalization capabilities of the model learned from this dataset.
We thus use this model, trained from the 10 first rotating cars, for testing on the “3D Object”
dataset (see Section 5.2 above). This is a challenging task, as those two datasets present very
different conditions in terms of imaging conditions, scale, background clutter, etc. We do the
testing specifically on the sixth car of the dataset, the exact pose of which was annotated by Zia
et al. [61] by manually fitting 3D models to the images. These annotations are used as ground
truth to measure the accuracy of the azimuth angle estimated by our method for continuous pose
estimation. We obtain excellent results (Fig. 13), close to the accuracy obtained by the complex
method of Zia et al. [61], which basically aligns 3D CAD models of cars with the images, compared
to our more general appearance-based procedure.

5.5. Volvo car: continuous 3D pose estimation and synthesis of novel views

We further evaluate our method for continuous pose estimation, this time with a model spanning
both dimensions of the viewing sphere around the object, as opposed to the single degree of freedom
(azimuth angle) of the rotating cars presented above. The choice of datasets for this task that
allow comparison with existing methods is limited, here again. We use the “3D pose Volvo car”
of Viksten et al. [62, 63] (Fig. 14). This allows a comparison with a classical method [62] that
uses discriminative image descriptors with a voting and averaging scheme, which is the classical
approach for robust 3D pose estimation (with the disadvantage of being limited to specific object
instances). The dataset features a toy car viewed under regular increments of azimuth and elevation
angles. We consider two training/test splits: a small and a large training set, with views spaced
respectively 20◦ and 10◦ apart (on both azimuth and elevation angles), and exactly one test view
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Spacing between training views 20◦ 10◦

Full proposed method (optimized viewpoint) Azimuth 27.22◦(1.67◦) 0.84◦(1.11◦)
Elevation 2.65◦(1.11◦) 0.86◦(0.56◦)

Nearest neighbour detection only Azimuth 35.56◦(10.00◦) 5.00◦(5.00◦)
Elevation 10.00◦(10.00◦) 5.14◦(5.00◦)

Johansson et al. [62] Azimuth 4.21◦ 1.25◦

Elevation 2.66◦ 1.06◦

Table 8: Continuous pose estimation on the Volvo car. We report the mean (median) error of
azimuth/elevation angles, in degrees. The large mean error in azimuth comes from a single mis-
classified test image, as attested by the small median error. We clearly outperform the classical
method of Johansson et al. based on discriminative feature descriptors and an averaging scheme in
pose space.

Figure 14: Training images of the Volvo car with views spaced 20◦ apart.

between each pair of training view, i.e. as a grid on the viewing sphere (as in [62]). In both cases, we
obtain results significantly superior to [62] in terms of accuracy (Table 8). The smaller training set
is more challenging for detecting deformations between views, and seemed to reach the limits of the
optical flow algorithm we use to detect deformations between neighbouring views. The dataset also
allows a good visualization of the capabilities of our generative model, by varying continuously the
viewpoint around the object. The effect, unfortunately hard to convey in static images (Fig. 15),
is a vivid impression of manipulating a 3D model of the object – although there is no underlying
explicit representation of the 3D shape. Videos and an interactive viewing tool are available on the
author’s website [43].

5.6. Non-textured objects

We finally demonstrate the interest of using coarse-scale gradients with a new dataset featuring
non-textured objects. These toy objects, made of plastic, feature basic shapes with few internal
edges (Fig. 16). This lack of distinctive visual characteristics actually makes them difficult to
identify among clutter, and the absence of texture renders the estimation of their pose problematic.
For example, considering the knife, one cannot differentiate the (round) handle from the (flat) blade,
observing edges and silhouette alone. We made this new dataset available on the author’s website
[43]. It comprises examples images of each object with segmentation and pose annotations (used for
training), plus a series of test images of cluttered scenes feature these objects, also with ground truth
segmentations and annotations (used for evaluation). Results of detection are counted as correct
when the overlap of bounding boxes with the ground truth exceeds 50% and the estimated pose is
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Figure 15: Demonstration of our generative model, with training views spaced 20◦ apart in azimuth
and elevation angles, and the edge-based appearance of the object generated at intermediate, unseen
viewpoints.

correct (error on viewpoint angles smaller than 20◦). Unsurprisingly, most objects are detected very
poorly using edges alone (with our method, though any other contour-based recognition method is
expected to work as poorly). Our full method however, using coarse-scale gradients in the measure
of similarity between the detections and the training examples, is able to differentiate between
similar-looking poses, and achieves far superior detection rates (Fig. 16). Most remaining incorrect
detections are due to clutter and confusion from the similar appearance of these simple objects. We
also tested the detection of those objects using gradient features alones, without edges. This did
not prove effective in practice, since their appearance, defined by these gradients, is very simple and
easily confused with the background or other objects. The knife for example, just corresponds to
a region without gradients (the flat blade) and a part with gradients oriented orthogonally to the
knife’s length (the round handle). Such a description is complementary to the silhouette represented
by edges, but is not informative enough by itself to localize such the object among clutter.

6. Discussion and conclusions

We introduced a representation of 2D appearance as distributions of low-level, fine-grained im-
age features. We used this representation to build multiview models of object categories. Those
models encode the appearance of objects at a number of discrete viewpoints, and, in addition, how
these viewpoints deform into one another as the viewpoint continuously varies. Those deformations
between neighbouring viewpoints are detected with an optical flow algorithm, and encoded as trans-
lations of individual image features with respect to viewpoint changes. We provide a way to measure
the similarity between an arbitrary test image and an object model at a specific viewpoint. We use
this measure of similarity to perform a number of tasks: detection and localization in cluttered
images (identifying the local maxima of the similarity measure with respect to locations in the test
image), discrete pose estimation (identifying the learned viewpoint with the highest similarity mea-
sure with the test image) and continuous pose estimation (identifying the maxima of the similarity
measure as the viewpoint continuously varies). In contrast with common practice, we address and
evaluate a number of related tasks with a single approach. This is reflected in our experimental eval-
uation, which includes extensive testing on a number of very different benchmark datasets, which
are seldom considered together. We demonstrate performance on the “ETHZ Shape” dataset for
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Figure 16: New dataset featuring non-textured objects with few distinctive characteristics. Sample
training images (first row) of the objects, the “knife” (round handle, flat blade), the “cup”, the
“ashtray” (both hollow on one side only) and the “peg” (round on one side, square on the other).
Results of detection and pose estimation on a total of 28 scenes are reported as interpolated pre-
cision/recall curves, using edges only (gray) and in conjunction with coarse-scale gradients (black).
Sample scenes (bottom rows, with bounding boxes of highest-scored detections) show that edges
provide only ambiguous information to determine the pose of the objects.
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shape matching and detection in clutter of categories well above baseline methods, on par with a
number of more task-specific methods. We also obtain remarkable performance on the recognition
of more complex objects, notably the cars of the “3D Object” dataset, with detection rates of 92.5%
and an accuracy in pose estimation of 91%. For the task of continuous pose estimation, we obtain
results superior to the state-of-the-art on the “rotating cars” dataset.

The limitations of our appearance model lie mostly in the representation of object categories.
The distrbution of image features are representative of the occurrence of features among the training
examples, but they do not encode the co-occurrence of these features. The resulting model can thus
represent all combinations of variations present in the examples. A model learned from images of
cars and giraffes would not only represent those two types of objects, but also anything looking
partially like a car and partially like a giraffe (i.e. combining visual features from different training
examples). This may be seen as a strength, as few examples can suffice to represent wide variations
of overall appearance. However, this also means that the overall procedure will practically be most
effective with training examples sharing strong visual characteristics, and not with categories defined
semantically or including instances looking vastly different. This representation of appearance thus
also assumes fairly rigid objects (although we still obtained good performance on shape matching of
the ETHZ classes). Complex deformable objects would probably be better handled by part-based
models (e.g. [17, 64]). We believe that this limitation was probably masked by the relative simplicity
of the objects in the available datasets. Let us note however that the proposed representation as
distributions of features could serve as a building block of part-based models.

The importance of shape and structure in the model leads to another limitation, in the context
of object recognition in complex scenes. As opposed to, e.g. the classical “bag of visual words” ap-
proach, our model does not encode contextual clues of the scene. For example, blue color and clouds
in the background of an image may be indicative of the presence of an airplane. Such information
is however not encoded within our model, aimed at individual object recognition. This information
could be taken into account at another, higher level, dealing for overall scene understanding.

All limitations discussed above lead to potential avenues for further developments. In addition,
on the task of continuous pose estimation, one could explore alternative optimization algorithms
to use with our generative model. Improvements in efficiency at this level could render the model
suitable for continuous pose tracking, thereby widening its range of applicability even further. The
detections of the deformations between the trained viewpoints, which currently uses a standard
algorithm to detect optical flow, could also be improved, be made applicable to more distant view-
points and to other types of training data, e.g. videos of the object. Finally, one could evaluate other
types of image features within the proposed approach. We demonstrated its particular applicability
to low-level features, although more traditional, higher-level features could also be used, such as
histogram-based descriptors [7, 16] or region features [65].
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